Reg. No. :

Question Paper Code : 73443

B.E./B.Tech. DEGREE EXAMINATION, APRIL/MAY 2017.

Third Semester

Electronics and Communication Engineering

EC 2204/EC 35/EC 1202 A/080290015/10144 EC 305 — SIGNALS AND SYSTEMS

(Common to Biomedical Engineering)

(Regulations 2008/2010)

Time : Three hours

Maximum: 100 marks

Answer ALL questions.

PART A — $(10 \times 2 = 20 \text{ marks})$

1. What are singularity functions?

2. What is an LTI system?

3. State Dirichlet conditions.

4. Define region of convergence of Laplace transform for a causal signal.

5. Define state variable and state equations.

6. State the condition for a continuous time system to be stable and causal.

7. What is aliasing?

11.

8. Give the transform pair equations of DTFT.

9. Give the Nth order linear constant coefficient difference equation of discrete system.

10. Find the stability of the system whose impulse response is $h(n) = 2^n u(n)$.

PART B — $(5 \times 16 = 80 \text{ marks})$

(a)	(i)	How are signals classified? Explain with example.		(8),
24.1	(11)	Determine fundamental period of the signal	1000	
		$x(t) = 2\cos(10t+1) - \sin(4t-1).$	1.1.1.1	(4)
	(iii)	Determine whether the signal $r(t) = \cos^2 w t$ is enorg	w signal	oni

power signal. And calculate their energy and power. (4)

 \mathbf{Or}

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PL

(b)

(i)

(6)

(8)

- (1)static or dynamic
- (2)linear or nonlinear
- (3)shift invariant or shift variant
- (4)causal or noncausal
- stable or unstable. (5)(ii) Sketch the signals

(1)
$$u[n-2]-u[n-5]$$

(2) $x[n] = \{1, 2, 6, 4, 8, 10\}$
sketch $x[2n]$

(a) 12. (i)

Find the trigonometric Fourier series of the waveform shown in Fig.12 (a) (i). (8)

(ii) Find the Fourier transform of $f(t) = t \cos at$.

Or

Find the Laplace transform of the waveform shown in Fig.12 (b)(i) (b) (i) (6)

- Find the inverse Laplace transform of $F(s) = \frac{s-2}{s(s+1)^3}$. (ii) * (10)
- 13. (a)

(i)

- Derive an expression for convolution integral.
- Determine the frequency response and impulse response of the (ii)system having following differential equation.

$$\frac{d^2 y(t)}{dt^2} + 3 \frac{dy(t)}{dt} + 2y(t) = 2 \frac{dx(t)}{dt} + 4x(t).$$
Or (8)

2

73443

(8)

	(b)	(i)	Determine $H(s)$ for the following differential equation $\frac{d^2y(t)}{dt^2} - \frac{dy(t)}{dt} - 2y(t) = x(t).$
			 Also determine h(t) for each of the following cases: (1) The system is stable (2) The system is causal (3) The system is neither stable nor causal. (10)
		(ii) .	Construct the state variable model for the transfer function
			$T(s) = \frac{Y(s)}{R(s)} = \frac{s+3}{s^3 + 5s^2 + 8s + 3}.$ (6)
14.	(a)	(i)	State and prove sampling theorem. (8)
		(11)	For the given signal $x(t) = \cos(200\pi + \theta)$ (1) If $x(t)$ is sampled at 250 Hz, 500 Hz and 100 Hz. At which
			frequency does aliasing phenomena take place?
	13		(2) What is the discrete time signal $x_d(n)$ if sampling frequency is
	2	(iii)	State any four properties of DTFT. (4)
		(111)	Òr
	(b)	(i)	Find the z-transform of $x(n) = \cos w_0 n$ for $n \ge 0$. (8)
1.4	7	(ii)	Find the inverse z-transform of $X(Z) = \frac{1}{(z-0.25)(z-0.5)};$
		÷	$ROC z > 0.5 \tag{8}$
15.	(a)	(i)	A discrete time causal system has a transfer function
		1.5	$H(Z) = \frac{1 - z^{-1}}{1 - 0.9z^{-1} - 0.15z^{-2}}.$
			 (1) Determine the difference equation of the system
			(2) Show pole zero diagram
		(ii)	(3) Find impulse response of the system. (10) Compute $y(n) = x(n) * h(n)$, where
	2		$r(n) = \int 1, 3 \le n \le 8$
			$\lambda(n) = 0$, otherwise
		. S. C	$h(n) = \begin{cases} 1, & 4 \le n \le 15 \\ . & . \end{cases} $ (6)
		•	[0, otherwise
	(b)	(i)	Draw direct form, cascade form and parallel form representations of
	(~)	(-/	the second order system function $H(z) = \frac{1}{1}$ (8)
		v	$(1+0.5z^{-1})(1-0.25z^{-1})$
		(ii)	Determine the system function for the causal LTI system with
			difference equation $y(n) - \frac{1}{2}y(n-1) + \frac{1}{4}y(n-2) = x(n)$. Also
			determine $y(n)$ if $x(n) = \left(\frac{1}{2}\right)^n u(n)$. (8)
2.1		. 1	

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor